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MACHINE LEARNING BASED MODEL sensors to ascertain the camera's 3D position and orientation 
LOCALIZATION SYSTEM vector ( i.e. pose estimate ) relative to an observed scene from 

which accurate virtual object overlays can be referenced . 3D 
CROSS REFERENCE TO RELATED sensors have proven costly , bulky , and complex . In lieu of 

APPLICATIONS 5 direct 3D scene measurement , 3D content may be derived 
from a plurality of 3D images using Structure from Motion 

This application claims priority from U.S. Provisional ( SFM ) algorithms . Such software has proven computation 
Application No. 62 / 508,446 filed May 19 , 2017 , entitled ally expensive . In either case , applications using such 3D 
“ ARTIFICIAL NEURAL NETWORK BASED MODEL- scene content generally require additional software to under 
ING & LOCALIZATION SYSTEM . ” The content of the 10 stand the local and global context of that pose estimate , such 
aforementioned application is hereby expressly incorporated as but not limited to , the height above a detected floor plane 
by reference into the present application in its entirety . or orientation relative to the Earth's gravitational vector . 

No prior art has demonstrated the ability to generate 3D 
FIELD OF THE INVENTION scene map with a contextually refined image sensor pose 

15 estimate from a single 2D image , which is critical to 
The invention relates generally to a method for localizing practical static image - based AR applications and can be 

and globally orienting an imaging device ( e.g. a camera ) in applied to simplify video - based AR applications . Herein , the 
an observed environment based on analysis conducted by a terms “ map ” and “ image ” are used interchangeably . 
trainable automated system on at least one 2 - Dimensional For example , U.S. Pat . No. 6,411,327 discloses a typical 
image of a scene within the subject environment . 20 modern stereoscopic camera system for generating a 3D 

scene map directly , through which an accurate and contex 
BACKGROUND OF THE INVENTION tual pose estimate could be derived from additional post 

image processing . However , the disclosed system , typical of 
Augmented Reality ( AR ) is a mode of Human Computer all stereoscopic imaging systems , requires complex optics 

Interaction in which virtual content is overlaid onto a user's 25 and the computationally intensive transmission and corre 
visual perception of their local environment such that the lation of a stereoscopic image pair . The method is reliant on 
virtual content appears to be physically present in a given a stereo - image pair and thus cannot be used to derive a pose 
scene . The overlay may occur on static images in an offline estimate from a 2D image . 
mode , or to video images in real - time or non - real - time U.S. Patent Application No. 2009/0110267 demonstrates 
modes . A number of electronic displays may be employed to 30 the typical mapping a 3D scene from which the image sensor 
facilitate the presentation of such AR content to a user , such pose estimate can be derived directly through the use of a 
as : mobile or large - format flat panel displays ( e.g. LCD , Light Detection and Ranging ( LIDAR ) imaging system . 
LED , etc. ) , head mounted displays ( e.g. near - eye micro- LIDAR belongs to a class of imaging systems that emit a 

displays , waveguide relay displays , semi - reflective displays , typically electromagnetic wave and then measure changes to 
virtual retinal displays , etc. ) , or projection displays . 35 the spatial or temporal properties of the wave following the 

In the first implementations , AR systems employed opti- reflection off of objects within a scene to discern the 
cal markers - high contrast 2 - dimensional printed images- topography of the scene . While this class of device inher 
to query a local or remote database and retrieve virtual ently provides a direct and sometimes accurate imaging 
content that was to be overlaid on a user's view of a real device pose estimates , the hardware is generally expensive , 
scene , whether viewed indirectly through a desktop display 40 bulky , and power intensive , and therefore are not practical 
or directly through head - mounted video or optical see- for mobile device applications . Additionally , the resultant 
through displays . In a marker - based configuration , a camera metadata describing a scene’s 3D and camera pose can drive 
records an image of the scene in which the marker is present , file sizes to be relatively large , taxing data storage or 
computer vision algorithms search for the marker pattern in network transmission resources . 
the observed image and identify the key features of the 45 Users typically capture static images and dynamic video 
marker image . The identification of a marker may be used to without the intent of using this data for AR applications , and 
automatically query a database to retrieve a corresponding as a result there are numerous image and video files avail 
file containing virtual content to be overlaid , such as 2D or able that lack the requisite 3D scene metadata needed for 
3D static or animated model ( s ) . The spatial transform of the realistic dynamic overlay of AR content integration into the 
marker to inform the system about the spatial depth ( scale 50 image . Thus , reliance on 3D imaging device - based pose 
and z - axis location ) , orientation ( rotation ) , and lateral / ver- estimates ( i.e. sensors that encode pose measurement data 
tical position ( x- and y - axis location ) ; effectively yielding a into the image file ) also precludes the derivation of pose 
camera pose estimate . The virtual content is then presented estimates from images captured on standard 2D camera 
to the user to complete the illusion that the virtual model systems . 
content is truly present in the user's local environment . 55 In the past decade , mobile devices ( e.g. , phones , tablets , 
However , physical markers must be printed , which is cum- Head Mounted Displays ( HMDs ) , etc. ) with integrated cam 
bersome . Additionally , for static images , markers must be eras have emerged , and often also often include processors 
placed in a scene prior to capturing an image and the marker running algorithms that automate the scene depth modeling 
position & orientation cannot be altered after image capture . and refinement process . However , most mobile devices use 

Advancements in real - time Computer Vision image fea- 60 monocular cameras , and thus the vast majority of image 
ture mapping have enabled modern AR applications to content captured by users is limited to 2D . 
perform real - time “ markerless ” tracking of a scene and an U.S. Pat . Nos . 9,119,559 and 9,148,650 both disclose 
associated virtual content overlays ; in a sense , the scene unique embodiments of SFM technology , which maps a 3D 
becomes the marker . However , for a scene to serve as a image from a plurality of 2D images . Similar technology is 
marker , the Imaging systems used for markerless AR and 65 exhibited in commercially available software such as 
other applications that require understanding of a scene’s 3D Autodesk 123d Catch® . In dynamic ( i.e. video input ) appli 
content have employed many combinations of a variety of cations the technique is often referred to as Simultaneous 



pth of 

US 10,977,818 B2 
3 4 

Localization and Mapping ( SLAM ) algorithms . The tech- One characteristic realism and depth cue that may be 
nique employs the process of correlating a set of 2 or more matched between the original scene and an inserted virtual 
static images of an observed scene to build a 3D map of the object includes scale . If the image device location is accu 
environment from which a camera pose estimate is derived . rately determined relative to a depth map of a given scene , 
However , this method requires complex computer vision 5 then the apparent scale of recognized 3D content from the 
software operating on multiple 2D images , generally taken original real scene is also accurately deterministic , which 
from a video stream or requiring the user to capture a permits a virtual object image / model to be placed in the 
sequence of individual static images from sufficiently dif scene at the appropriate scale and perspective relative to the 
ferent perspectives while ensuring the scene content remains viewer . For example , if the virtual object is intended to be 
largely static . Thus , the method is computationally expen 10 placed “ deeper " in the scene , it's size will be increasingly 

small relative to the view window . Further , lateral movement sive , sometimes labor intensive , and the generation of a 3D of a virtual object can be coupled with an appropriately map or derivation of the camera pose estimate from a single scaled virtual object rotation vector dependent on the image is not achievable using such methods . intended depth of the virtual object in the image scene . A Techniques have emerged which employ Machine Learn 15 highly accurate camera localization determination will yield ing constructs and algorithms , such as Markov Random an accurate matching of the inserted object scale , such that 
Fields ( MRFs ) , or Artificial Neural Networks ( ANNs ) , com- the size and orientation of the object appears as it would if 
monly Convolutional Neural Networks ( CNNs ) , or combi- it were a native object in the real scene . Critically , the pose 
nations thereof , trained on scene images with corresponding estimate may be coupled with semantic contextual data 
high accuracy depth maps to generate estimated depth maps 20 gathered through the segmentation and recognition of spe 
from a single 2D image input . In the present invention , a cific objects in a scene such as the 3D location and orien 
CNN is employed , but any machine learning algorithm tation vector of an identified floor plane object . 
capable of being trained to estimate scene based The CNN in the loop serves as a significantly faster and 
on 2D images may be employed . As described in “ Make3D : more accurate proxy to human 2D image depth and object 
Learning 3D Scene Structure from a Single Still Image ” A. 25 segmentation / classification analysis ( to include scene space 
Saxena , et al . , IEEE Transactions on Pattern Analysis and boundaries such as floor and wall planes ) as well as non 
Machine Intelligence ( Volume : 31 , Issue : 5 , May 2009 ) , Machine Learning Computer Vision techniques . Moreover , 
image sets may be used in a supervised or unsupervised the CNN can be continually and rapidly trained for continu 
manner to train an ML system ( an MRF in this instance ) , to ally increasing performance , to the benefit of a massive 
detect depth of points in a 2D image . In an analogous CNN 30 number of end users who obtain and employ copies of a 
implementation , the CNN generates depth by rapidly and revised CNN or have parallel access to a continually updated 
inherently analyzing subtle depth cues present in an image CNN via processing capabilities over a network . Contrarily , 
which may not be apparent to the human observer , such as a human who is increasingly trained analyze a 2D image 
relative degree of focus , texture variations , lighting effects , for depth / object recognition serves to benefit only 1 or a 
as well as other likely depth cues typically present in 2D 35 limited number of end users . 
images which the CNN has learned during training , but Maps created by multiple imaging devices from multiple 
which have not been characterized by humans . While a 3D perspectives is useful . Segmentation and classification algo 
map is generated , the method for inferring a contextually rithms may be used , such that in this example , the observed 
refined image sensor pose estimate , a property critical to the chair is recognized in general to be a chair and if a model or 
realistic representation of the physical interaction between 40 attributes describing a similar chair are available then that 
virtual objects and the real scene content , is not disclosed in data can be used to provide some degree of hidden infor 
prior art . mation such as knowledge that the chair has a discrete 

“ back ” and does not extend to infinity . 
SUMMARY OF THE INVENTION AND Through the application of object detection CNN , the 

ADVANTAGES 45 present invention is capable of revealing hidden scene 
information by using the associated semantic context of 

Embodiments of the present invention are directed to recognized objects . Hidden information in an environment is 
devices , methods and systems for facilitating AR applica- particularly useful for AR systems supporting simulated 
tions , particularly those applied to static images , although physical interactions between virtual and real content within 
other applications such as embedded firmware in augmented 50 a scene , such as simulated physics ( gravity and collisions ) , 
reality or wearable devices for real - time contextually refined occlusion and illumination effects . For example , an observed 
localization and orientation of a user within an environment , and recognized chair object is recognized in general to 
are possible . In accordance with the present invention , the possess the general properties of a matched chair object 
deficiencies of prior imaging device localization systems record and such semantic contextual data can be used to 
have been overcome . 55 provide some degree of hidden information such as knowl 

Following the construction of a depth map , to realize a edge that the chair has a discrete “ back ” and does not extend 
map's utility for AR applications it becomes necessary to to infinity , or improving the refinement of a floor plane with 
localize and orient the original imaging device relative to the the understanding that a chair's segmented feet generally sit 
observed scene . This pose estimation provides the image flat on the floor plane . This process can be implemented 
view perspective , such that when a non - native virtual object 60 using object recognition of any type upon which a Machine 
is overlaid ( in the case of a simple 2D image overlay , herein , Learning algorithm is trained . 
“ image ” ) or embedded ( in the case of a 3D model insertion , In the most general form , the present invention comprises 
herein “ model ” ) , the inserted virtual object is subjected to a system capable of accepting at least one 2D image of a 
image transformations associated with the physical charac- scene as an input , using a depth image - trained Machine 
teristics of the original imaged scene , which yield composite 65 Learning algorithm ( a CNN in the preferred embodiment ) , 
images having realistic depth cues from the viewer's per- to efficiently reconstruct a 3D ( depth ) map of the scene 
spective . relative to the imaging device , and further deriving a pro 
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portionately accurate 3D position and orientation of the described in detail so as not to obscure the embodiments 
source imaging device relative to the scene . One or more described herein , but it is understood by those of ordinary 
additional object recognition - trained Machine Learning skill in the art that such optional features may be practiced 
algorithms may be employed to detect objects that provide in conjunction with the disclosed invention . The description 
additional semantic context to the derived pose estimate . For 5 is not to be considered as limiting the scope of the embodi 
example , such contextual information can aid in discerning ments described herein . 
whether or not the imaging device was not level with respect Referring to FIG . 1 , the fundamental process of the 
to the Earth's gravitational vector . As an additional example , disclosed method is depicted . At its inception 100 , the 
contextual information can further aid in discerning if a process requires an implementing data processing system to 
detected floor plane is truly not orthogonal to the Earth's 10 include a means of receiving image sensor input data 101 . 
gravitational vector . Compared to the state of the art , the The data may be transmitted to the data processing system , 
present invention offers a computationally efficient , inex- for example , as a stored file on storage media or data feed . 
pensive and accurate method of reconstructing a 3D map of In one embodiment , the input data may be captured directly 
a scene with contextually refined imaging device pose by a 2 - Dimensional imaging device , such as , but not limited 
estimate , from a static 2D image . 15 to , standard cameras commonly integrated in mobile cellular 

phones and tablets such as Charge - Coupled Device ( CCD ) 
BRIEF DESCRIPTION OF THE DRAWINGS 

The Image input may also be derived indirectly , for 
The enclosed figures , accompanied by the following example , from digital video screen captures , single image 

detailed description serve to improve understanding of 20 video file frame extractions , or scanned analog photographs . 
exemplary and preferred embodiments of the present inven- The input data , 101 , must include data defining the source 
tion , wherein : imaging device parameters such that the imaging devices 

FIG . 1 is a simplified flow diagram depicting the exem- Angular Field of View ( AFOV ) , 103 , is either known or 
plary basic elements of the invention to include the 2D determinable . For rectangular image form factors , the AFOV 
image input from an imaging device with known focal 25 is typically given in vertical and horizontal degrees relative 
length , the processing of that image through a CNN trained to the center of the imaging device lens , although other form 
to estimate scene depth information from a 2D image input , factors such as circular frame images are possible . In a 
additional processing of the depth map to derive the image circular image , AFOV may be given in terms of a single 
device 3D pose estimate vector , and the 3D depth map and angle relative to the center of the imaging device lens . 
imaging device pose estimate output ; Alternatively , the system must include a means of deriv 
FIG . 2 depicts the geometries associated with the ing or otherwise estimating the imaging device parameters 

Machine Learning - based image sensor 3D pose estimation to ascertain the AFOV . For example , for a CCD - based 
process ; camera , the focal length of said camera along with the 

FIG . 3 is a simplified flow diagram depicting the exem- horizontal dimension of the image sensor chip is sufficient to 
plary elements of the invention extended to include the 35 compute the AFOV . As an alternative example , if the type of 
application of an additional CNN trained to facilitate object commercially available camera used to produce the subject 
detection ( segmentation and classification ) , specifically a image is known , the system can use a look - up table to 
floor plane object , to support a contextually refined image determine all or a portion of the necessary camera param 
sensor pose estimate ; eters from manufacturer data . In yet another embodiment , 

FIG . 4 depicts the geometries associated with the 40 the system employs a secondary machine learning algorithm 
Machine Learning - based image sensor 3D pose estimation ( not shown ) trained to estimate camera AFOV from an input 
process with floor plane detection ; images . 

FIG . 5 is a generalized flow diagram of the invention The Single Image Depth CNN ( i.e. “ Depth - CNN ' ) , 102 , is 
extended to include the application of an arbitrary number of a CNN that has been trained on the correlations between 2D 
object detection CNNs to support further contextual refine- 45 images of scenes and high - accuracy 3D models ( e.g. scans ) 
ment of the image sensor pose estimate ; of said scene , such that the resultant CNN is capable of 

FIG . 6A depicts an exemplary implementation of the estimating depth of at least part of a 2D image input . A CNN 
method of the present invention in a tablet computer based is depicted , however , any machine learning algorithm which 
AR application and the associated exemplary user interac- can be trained to estimate the pixel depth from a 2D image 
tion ; 50 input may be employed at step 102. In parallel to the AFOC 
FIG . 6B is a continuation of FIG . 6A ; computation , the Depth - CNN receives the 2D image of 101 

as input and estimates the most probable depth of at least a 
DETAILED DESCRIPTION OF THE portion of , and preferably all , points ( represented by image 

PREFERRED EMBODIMENT pixels ) comprising the observed scene of the input 2D 
55 image , relative to the center of the imaging device lens . 

A method and exemplary implementation system for Using a depth estimate of an arbitrary point in the 
generating an accurate 3D pose estimate of a source image observed scene and the AFOV indicator of the source 
sensor relative to 3D objects in an observed scene , based on imaging device , the Camera Pose Estimate Calculation , 104 , 
a 2D source image input , is described . Referring to the can be executed . The pose estimate is then available for 
figures , like numerals indicate like or corresponding parts 60 output , 105 , by the implementing system in conjunction with 
throughout several views . Many specific details are set forth the CNN - generated image depth map to conclude the pro 
in order to provide a thorough understanding of the embodi- cess . The pose estimate and depth map may be output as 
ments described herein , but it is understood by those of separate files on separate media or in the same file and media 
ordinary skill in the art that the embodiments described ( e.g. as a depth image file with metadata identifying the 
herein may be practiced without these specific details . 65 image sensor pose estimate ) . 
Further , in other instances , well - known optional features As depicted in FIG . 2 , any arbitrary real object point , e.g. 
( i.e. methods , procedures and components ) have not been 208 , represented as a pixel 208a and b in a 2D image 207 of 
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the observed scene 206 , for which a depth estimate 205 has with the floor plane identify all non - floor plane objects , 
been determined , may be used to generate a pose estimate of which may be used by an AR application such as an 
the source image device , 200. For the purposes of reverse occlusion and / or collision mask to simulate interactions 
engineering the pose estimate , the input 2D image of 101 is between real scene objects and virtual objects such as visual 
modeled as the virtual image plane , 207 , projected between 5 occlusion or physical collisions . 
the imaging device 200 and real scene 206. The scale of FIG . 3 depicts a second embodiment , which employs the 
focal distance 204 , between the lens and the virtual image same inputs and steps described in FIG . 1 , with the excep plane , 207 , is exaggerated in the figures for clarity . The pose tion that an Object Segmentation & Classification Machine estimate is a multi - dimensional vector that provides , at a Learning algorithm , 107 , which has been specifically trained minimum , the distance ( d ) , 205 , and orientation angle ( Ox , 10 to recognize a floor object in a 2D scene image , is executed 203 , and Oy , 202 ) of the imaging device . In the exemplary 
figure , for simplicity , the imaging device pose is ultimately concurrently with the standard scene depth - sensing CNN , 
referenced from the center of the imaging device's lens , 201 , 102a , and the Imaging Device AFOV determination steps , 
in 3D space relative to all real 3D points in the observed 103a . In the exemplary flow diagram depicted , a trained 
scene , 206. This point is generally located at a focal distance 15 CNN is the Machine Learning algorithm applied in step 107 . 
( f ) along the optical axis , 204 , in front of the center of the The outputs of steps 102a , 103a , and 107 and used in step 
imaging system image sensor ( e.g. CCD chip in digital 104a to calculate a contextually refined pose estimate for the 
cameras or film in analog cameras ) . Any arbitrary point may imaging device . The pose estimate is output 105a in con 
be used to establish the reference coordinate system for the junction with the CNN - generated 3D map of the image to 
pose estimate by applying the appropriate distance offsets . 20 complete the process , 106a . 

The method described uses a spherical coordinate system FIG . 4 depicts the geometry associated with the second 
for simplicity , although other coordinate systems may be embodiment outlined in the process of FIG . 3. Specifically , 
used . The optical axis of the image device , 204 , passes the imaging device , 200a , has a first basic pose estimate 
orthogonally through both the center of the image sensor relative to all scene objects is determined using the outputs 
lens 201 and the central pixel of the virtual image 207. Thus , 25 of steps 102a and 103a based on the input image 207a and 
assuming the quality of the depth estimate from 102 for the image device parameter inputs 101a , respectively , as out 
central image pixel is determined to be of satisfactory lined in the description of FIG . 2. At this stage , the pose 
quality , the basic pose estimate is determined simply as estimate lacks semantic context . Concurrently , step 107 is 
distance ( d ) , 205 , derived from the CCN - generated depth applied to the image 207a , to segment and classify image 
map , and orientation angles ( 0 , and , ) , 203 and 202 which 30 pixels that the CNN of step 107 has been trained for 
are equal to zero ( i.e. aligned with the optical axis ) . The recognize as being part of a “ floor plane ” object , 212. Once 
resultant basic pose estimate , PB , may be conveyed , for recognized , step 104a may apply the depth estimates for 
example , in vector format : Po = ( 205 , 203 , 202 ( = ) d , 0 % , 0 , ) . three or more pixels ( e.g. 211 ) selected from a sampling of 

In one embodiment , the vertical ( y ) and horizontal ( x ) pixel depth estimates , 205a , comprising the floor object , as 
dimensions of the imaging device sensor along with the 35 determined in step 102a . Pixels having greater spatial dis 
device focal distance are provided such the x and ? offset parity have a higher likelihood of generating an accurate 
distance of any pixel in the image sensor plane , and thus floor plane location and orientation vector . For , example , 
virtual image plane , is determinate . In conjunction with the assuming only three points are used for floor plane identi 
input focal distance , the angular position of a subject pixel fication , a triangular patch 216 is formed that represents the 
may be determined . Therefore , as an alternative to using the 40 floor plane orientation . Step 104a uses basic trigonometry to 
central image pixel , any arbitrary pixel in the image may calculate the orientation angles ( 0x1 , 214 , and Oz? , 215 ) 
also be used to generate a pose estimate vector's compo- relative to the imaging device reference point axes , 201a . If 
nents by applying trigonometry to the imaging device more than three points are used to increase fidelity , and the 
parameters as follows : resulting points do not lie perfectly in a plane , then nearest 

d = the input depth estimate 45 plane found using a matching function may be employed to 
0x = - ( sin ( y / f ) ) , relative to optical axis 204 ; identify the highest probable floor plane 212. The exemplary 
0 , = - ( sin - ' ( x / f ) ) , relative to optical axis 204 ; system is designed to assume the detected floor plane is 
In a second embodiment , the angular vertical and hori- continuous , flat and extends to intersect with the vertical ( y ) 

zontal FOV limits are provided , from which the focal axis of the imaging device reference point axes , 201a . The 
distance can be derived to generate the image pixel angle 50 length of the resultant ray 213 defines the estimated height 
components by again applying trigonometry . of the camera above the floor plane . 

The basic pose estimate , coupled with a depth map of the Assumptions associated with the definition of the floor 
observed scene provides a rudimentary 3D environment plane object may be made . For example , in the preferred 
with which virtual objects can be overlaid for AR applica- embodiment , the floor plane is defined such that the plane 
tions . However , users often capture images that are not 55 extends to infinity . Other system definitions for a floor plane 
parallel to the ground , so inferring an understanding of the object may include , but are not limited to , the plane being 
context of objects within an observed scene image . This orthogonal to the vector of the Earth's gravitational accel 
contextual refinement to the pose estimate becomes useful , eration . The assumption that the plane extends to infinity is 
for example in the case of ground plane object identification , an example of how semantic contextual data may be lever 
to realistic embedding of virtual objects because the ground 60 aged to reveal hidden information in a scene based on prior 
plane often serves as the plane upon which virtual objects or learned knowledge . 
are translated . Additionally , in many AR applications that The resultant contextual data describing the floor plane 
attempt to overlay virtual objects in a scene that appear and may be encoded with the base image sensor pose estimate 
behave like real objects in the target scene , it is necessary for into a composite contextually refined pose estimate , P1 , in 
the system to have data identifying the ground plane location 65 the form of a higher - dimensioned vector ( e.g. a 6 - Dimension 
and orientation in relation to the imaging device . By default , vector ) such that P2 = ( 205 , 203 , 202 , 213 , 214 , 215 ( = ( d , 0x , 
knowledge of object points in the scene which do not align Oy , d , 0x1 , 0,1 % . The subscript “ 1 ” is used to annotate vector 
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components providing contextual information derived from image in the scene . Optionally , the scene image 301a could 
a first recognized object ( i.e. the floor plane object ) . be processed through a method of the present invention 
As depicted in FIG . 5 , the process described in FIG . 3 may utilizing wall plane detection CNN to detect and determine 

be extended to include an arbitrary number , N , of trained pose estimates , for example , for walls 307 and 308 , which 
Object Segmentation and Classification machine learning 5 terminate at the intersection with floor plane 305a . Addi 
algorithms . The flow diagram of FIG . 5 includes all of the tionally , scene image 301a could further employ an exem 
steps of FIG . 3 , with the exception that a set containing an plary sofa object detection , to detect sofa 306. With the 
arbitrary number of Object Segmentation & Classification known location and orientation of sofa 306 , an appropriate 
Machine Learning algorithms arranged in parallel with steps 3D occlusion and object collision map may be overlaid on 
102b and 103b , beginning with a first object detection step 10 image 301a , providing limits for the translation of table 
107a and ending with a final Nih step , 107b . Each object 302a within the image and also revealing that the space 
detection step within the set having been trained to detect an between sofa 306 and 307 , which is bounded below by floor 
object within a 2D input image , 101.b. Similar to the process plane 305a , is an empty space into which the table may be 
of step 104a in FIG . 3 , in which the location and orientation translated , albeit partially occluded by the sofa . 
of the detected floor plane relative to the imaging sensor is 15 It is to be understood that the above referenced methods 
determined via simple trigonometry applied to three or more may be implemented on a non - transitory machine - readable 
candidate object points in the image , the location and storage medium comprising a plurality of instructions that , 
orientation of other detected objects of FIG . 5 , may be in response to being executed on a computing device , cause 
determined in this manner as well . Depending on the com- the computing device to complete the method steps in the 
plexity of the detected objects geometry , more or fewer 20 orders disclosed for each respective embodiment . 
points may be needed to yield an accurate pose estimate As one having ordinary skill in the art will appreciate , the 
vector . above referenced methods are applicable to any image 

The resultant contextual data included in the output , 105b , comprising any content in a variety of formats to include , 
describing the imaging sensor pose estimate with respect a but not limited to interior spaces , landscapes , architectural 
scene and an arbitrary number of detected objects may be 25 renderings , Computer Aided Design ( CAD ) renderings , con 
encoded with the base image sensor pose estimate into a sumer products , surveillance video screen captures , or any 
composite contextually refined pose estimate , Pn , in the other item that may be captured in a two dimensional image . 
form of a higher - dimensioned vector having the generalized It should be further understood that various changes and 
form : Px = ( d , Ox , Oy , d , Ox? , 0 dy - 1 , 0xN - 1 , Q_N - 1 , dns modifications to the embodiments disclosed herein will be 
OxN , Ont . The subscript “ N ” refers to the number of object 30 apparent to those skilled in the art . Such changes and 
detection algorithms employed in the system . The number of modifications can be made without departing from the spirit 
vector components associated may be as few or as many as and scope of the present disclosure and without diminishing 
necessary , and may use a single or hybrid coordinate system , its intended advantages . 
to provide sufficient detail needed to accurately encode the What is claimed : 
location and orientation of the object in the imaging device 35 1. A computer - operated method of determining an angular 
pose estimate . Further , an image processed using a method field of view and estimating a pose of a source imaging 
embodiment with multiple object detection algorithms may sensor based on at least one two - dimensional ( 2D ) image 
not locate some objects for which CNN's have been trained input comprising a plurality of image pixels of an observed 
to identify . In this instance , vectors may still be encoded to scene , the method comprising : 
maintain data structure , but with a null value for each 40 ( a ) accessing an input data set comprising a 2D image data 
component associated with the undetected object . set to be analyzed and source imaging sensor parameter 
FIG . 6A depicts an exemplary implementation of the information , ( b ) executing a Machine Learning algo 

present invention in a tablet computer - based AR application . rithm that uses said 2D image data set of the input data 
It is understood that a 2D image of an observed scene , 301 , set to generate estimated depth values for at least a 
has been processes through the method of the preferred 45 portion of image pixels output by the source imaging 
embodiment of the present invention , in which the image has sensor to provide real three - dimensional ( 3D ) image 
been evaluated by the depth - CNN and camera parameters points having associated depth values , 
were supplied based on the tablet model such that the source ( c ) in parallel with executing the Machine Learning 
image sensor's pose estimate has been ascertained relative to algorithm , determining an angular field of view of the 
the scene and a depth map created for the scene and output 50 source imaging sensor based on the input data set and 
to the AR software application to be used for AR visualiza- generating a the source imaging sensor angular field of 
tion . In addition , the floor plane 305 has been recognized by view as output , 
the floor plane detection CNN , which was encoded into the ( d ) in response to the real 3D image points including the 
output pose estimate vector , allowing the AR software generated estimated depth values and the generated 
application to use the plane as a reference for landing the 55 angular field of view , generating a source imaging 
base of a 3D virtual model of table , 302 , that has been sensor ( 3D ) pose estimate relative to the real 3D image 
overlaid onto the image . Arrow , 304 , is showing the user , points in the observed scene , and 
303 , intension to relocate ( drag ) the table model to the center ( e ) outputting the generated 3D pose estimate in conjunc 
of the room . tion with the estimated depth values . 
FIG . 6B shows the execution and result of the user's 60 2. The method of claim 1 , wherein the Machine Learning 

intention in FIG . 6A . As the user dragged the table model , algorithm comprises an Artificial Neural Network ( ANN ) . 
302a , to its new position , the scale of the model decreased 3. The method of claim 1 , wherein generating the 3D pose 
proportionately , and the rotational perspective of the model estimate comprises generating a vector with spherical coor 
was slightly adjusted , based on the known imaging sensor dinates . 
pose estimate . Also , the table model was translated such that 65 4. The method of claim 1 , further comprising performing 
it appeared to slide across the plane of the floor 305a in the a secondary Machine Learning algorithm , executed directly 
image , providing a sense of realism to the embedded virtual before , directly after , or in parallel with ( b ) and ( c ) , wherein 
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the secondary Machine Learning algorithm is trained to objects in conjunction with pose estimate vector outputs of 
recognize a floor plane in a scene image , wherein perform- a respective object detection Machine Learning algorithm . 
ing the secondary Machine Learning algorithm receives an 13. The method of claim 4 , wherein ( c ) includes perform 
input scene image data set , and segments and classifies a ing an additional calculation to create a file containing all 
floor plane object within the scene image and subsequently 5 pixels not coincident with a detected floor plane . 
issues a matching pixel set as output . 14. The method of claim 7 , further including training the 5. The method of claim 4 , wherein performing the sec Machine Learning algorithm to detect wall plane objects . ondary Machine Learning algorithm includes ( i ) receiving 15. The method of claim 7 , further including training the floor plane pixel values , ( ii ) determining associated depth Machine Learning algorithm to detect pendulous objects . estimates for said received pixel values , and ( iii ) using 10 16. A computer - operated system for determining an angu trigonometry or another suitable mathematical method to lar field of view and estimating a three - dimensional ( 3D ) calculate location and orientation of a floor plane relative to 
the imaging sensor . pose of a source imaging sensor , comprising at least one 

6. The method of claim 5 , wherein performing the sec processor configured to perform operations comprising : 
ondary Machine Learning algorithm includes encoding the 15 ( a ) receiving , based on image capture by a source imaging 
calculated location and orientation of the floor plane as sensor , a two - dimensional ( 2D ) input image data set 
relative 3D location and orientation measurements , respec comprising image pixels , 
tively , into an output imaging sensor pose estimate vector in ( b ) determining an angular field of view of the source 
the form of additional vector components . imaging sensor based on the 2D input image data set , 

7. The method of claim 1 , further comprising performing 20 ( c ) using a Machine Learning algorithm that analyzes the 
an arbitrary number of additional Machine Learning algo 2D input image data set , estimating depth values for at 
rithms , executed directly before , directly after , or in parallel least some of the image pixels to provide real 3D image 
with ( b ) and ( c ) , or with each other , wherein an arbitrary one points , and 
of the Machine Learning algorithm ( s ) has been trained to ( d ) in response to the determined angular field of view and 
recognize an arbitrary object in a scene image , and upon 25 the real 3D image points including the estimated depth 
receiving an input scene image data set , is capable of values , estimating a 3D pose of the source imaging 
segmenting and classifying said object within the scene sensor relative to the real 3D image points . image and subsequently issuing the matching pixel set as 17. The system of claim 16 wherein the 3D pose com output . prises a vector with spherical coordinates . 

8. The method of claim 7 , wherein ( c ) further encodes 30 18. The system of claim 16 wherein the at least one relative 3D location and orientation measurements of each 
detectable object into an output imaging sensor pose esti processor is further configured to encode relative 3D loca 
mate vector in the form of additional vector components . tion and orientation measurements of at least one detectable 

9. The method of claim 2 , wherein the ANN comprises a object into an output imaging sensor pose estimate vector in 
the form of additional vector components . Convolutional Neural Network ( CNN ) . 

10. The method of claim 1 further including training the 19. The system of claim 16 wherein the at least one 
Machine Learning algorithm using supervised training . processor is further configured to manipulate additional 

11. The method of claim 1 , wherein a training data set for semantic context definitions of objects in conjunction with 
the Machine Learning algorithm comprises a plurality of pose estimate vector outputs . 
image data set pairs , a 2D image of the observed scene and 40 20. The system of claim 16 wherein the at least one 
a 3D image of the same scene . processor is further configured to detect wall plane , floor 

12. The method of claim 7 , further including storing and plane and pendulous objects . 
transmitting additional semantic context definitions of 

35 


